Product Categories
Social Media
Home > News > Content
Worm Drive (1)
- Jul 26, 2017 -

worm drive is a gear arrangement in which a worm (which is a gear in the form of a screw) meshes with a worm gear (which is similar in appearance to a spur gear). The two elements are also called the worm screw and worm wheel. The terminology is often confused by imprecise use of the term worm gear to refer to the worm, the worm gear, or the worm drive as a unit.

Like other gear arrangements, a worm drive can reduce rotational speed or transmit higher torque. A worm is an example of a screw, one of the six simple machines.

One of the major advantages of worm gear drive units are that they can transfer motion in 90 degrees.


gearbox designed using a worm and worm-wheel is considerably smaller than one made from plain spur gears, and has its drive axes at 90° to each other. With a single start worm, for each 360° turn of the worm, the worm-gear advances only one tooth of the gear. Therefore, regardless of the worm's size (sensible engineering limits notwithstanding), the gear ratio is the "size of the worm gear - to - 1". Given a single start worm, a 20 tooth worm gear reduces the speed by the ratio of 20:1. With spur gears, a gear of 12 teeth must match with a 240 tooth gear to achieve the same 20:1 ratio. Therefore, if the diametrical pitch (DP) of each gear is the same, then, in terms of the physical size of the 240 tooth gear to that of the 20 tooth gear, the worm arrangement is considerably smaller in volume.


There are three different types of gears that can be used in a worm drive.

The first are non-throated worm gears. These don't have a throat, or groove, machined around the circumference of either the worm or worm wheel. The second are single-throated worm gears, in which the worm wheel is throated. The final type are double-throated worm gears, which have both gears throated. This type of gearing can support the highest loading.[1]

An enveloping (hourglass) worm has one or more teeth and increases in diameter from its middle portion toward both ends.[2]

Double-enveloping wormgearing comprises enveloping worms mated with fully enveloping wormgears. It is also known as globoidal wormgearing.[3]

Direction of transmission

Unlike with ordinary gear trains, the direction of transmission (input shaft vs output shaft) is not reversible when using large reduction ratios, due to the greater friction involved between the worm and worm-wheel, when usually a single start (one spiral) worm is used. This can be an advantage when it is desired to eliminate any possibility of the output driving the input. If a multistart worm (multiple spirals) is used then the ratio reduces accordingly and the braking effect of a worm and worm-gear may need to be discounted, as the gear may be able to drive the worm.

Worm gear configurations in which the gear cannot drive the worm are called self-lo

cking. Whether a worm and gear is self-locking depends on the lead angle, the pressure angle, and the coefficient of friction.